29,384 research outputs found

    Strain energy calculations of hexagonal boron nanotubes: An ab-initio approach

    Full text link
    An ab initio calculations have been carried out for examining the curvature effect of small diameter hexagonal boron nanotubes. The considered conformations of boron nanotubes are namely armchair (3,3), zigzag (5,0) and chiral (4,2), and consist of 12, 20, and 56 atoms, respectively. The strain energy is evaluated in order to examine the curvature effect. It is found that the strain energy of hexagonal BNT strongly depends upon the radius, whereas the strain energy of triangular BNTs depends on both radius and chirality.Comment: 7 pages, 4 figure

    Nonuniversal exponents in sandpiles with stochastic particle number transfer

    Full text link
    We study fixed density sandpiles in which the number of particles transferred to a neighbor on relaxing an active site is determined stochastically by a parameter pp. Using an argument, the critical density at which an active-absorbing transition occurs is found exactly. We study the critical behavior numerically and find that the exponents associated with both static and time-dependent quantities vary continuously with pp.Comment: Some parts rewritten, results unchanged. To appear in Europhys. Let

    Eigenvalue spectrum for single particle in a spheroidal cavity: A Semiclassical approach

    Full text link
    Following the semiclassical formalism of Strutinsky et al., we have obtained the complete eigenvalue spectrum for a particle enclosed in an infinitely high spheroidal cavity. Our spheroidal trace formula also reproduces the results of a spherical billiard in the limit η1.0\eta\to1.0. Inclusion of repetition of each family of the orbits with reference to the largest one significantly improves the eigenvalues of sphere and an exact comparison with the quantum mechanical results is observed upto the second decimal place for kR07kR_{0}\geq{7}. The contributions of the equatorial, the planar (in the axis of symmetry plane) and the non-planar(3-Dimensional) orbits are obtained from the same trace formula by using the appropriate conditions. The resulting eigenvalues compare very well with the quantum mechanical eigenvalues at normal deformation. It is interesting that the partial sum of equatorial orbits leads to eigenvalues with maximum angular momentum projection, while the summing of planar orbits leads to eigenvalues with Lz=0L_z=0 except for L=1. The remaining quantum mechanical eigenvalues are observed to arise from the 3-dimensional(3D) orbits. Very few spurious eigenvalues arise in these partial sums. This result establishes the important role of 3D orbits even at normal deformations.Comment: 17 pages, 7 ps figure

    Anomalous low level of cosmic ray intensity decreases observed during 1980

    Get PDF
    Past studies have revealed solar cycle changes in the sunspot activity, as well as in many other solar parameters, such as, solar flares and solar coronal holes. These solar features in turn produce the observed cyclic variations in the interplanetary plasma and fields. Both the cosmic ray intensity as well as the intensity of geomagnetic disturbances are affected by the interplanetary changes and produce 11/22 year periodicity. An anomalous situation has been noticed during the year 1980 (period of high sunspot activity), when both the geomagnetic disturbance index Ap, as well as the magnitude and number of Forbush decreases as small. Such an anomaly occurs, in spite of the fact that both the sunspot numbers and the energetic solar flares are almost maximum during the present solar cycle

    Economic Efficiency, Distributive Justice and Liability Rules

    Get PDF
    The main purpose of this paper is to show that the conflict between the considerations involving economic efficiency and those of distributive justice, in the context of assigning liability, is not as sharp as is generally believed to be the case. The condition of negligence liability which characterizes efficiency in the context of liability rules has an all-or-none character. Negligence liability requires that if one party is negligent and the other is not then the liability for the entire accident loss must fall on the negligent party. Thus within the framework of standard liability rules efficiency requirements preclude any non-efficiency considerations in cases where one party is negligent and the other is not. In this paper it is shown that a part of accident loss plays no part in providing appropriate incentives to the parties for taking due care and can therefore be apportioned on non-efficiency considerations. For a systematic analysis of efficiency requirements, a notion more general than that of a liability rule, namely, that of a decomposed liability rule is introduced. A complete characterization of efficient decomposed liability rules is provided in the paper. One important implication of the characterization theorems of this paper is that by decomposing accident loss in two parts, the scope for distributive considerations can be significantly broadened without sacrificing economic efficiency.Tort Law, Liability Rules, Decomposed liability Rules, Efficient Rules, Nash Equilibria, Negligence Liability, Distributive Justice

    Activation gaps for the fractional quantum Hall effect: realistic treatment of transverse thickness

    Full text link
    The activation gaps for fractional quantum Hall states at filling fractions ν=n/(2n+1)\nu=n/(2n+1) are computed for heterojunction, square quantum well, as well as parabolic quantum well geometries, using an interaction potential calculated from a self-consistent electronic structure calculation in the local density approximation. The finite thickness is estimated to make \sim30% correction to the gap in the heterojunction geometry for typical parameters, which accounts for roughly half of the discrepancy between the experiment and theoretical gaps computed for a pure two dimensional system. Certain model interactions are also considered. It is found that the activation energies behave qualitatively differently depending on whether the interaction is of longer or shorter range than the Coulomb interaction; there are indications that fractional Hall states close to the Fermi sea are destabilized for the latter.Comment: 32 pages, 13 figure

    Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems

    Get PDF
    In a bilayer system consisting of a composite-fermion Fermi sea in each layer, the tunnel current is exponentially suppressed at zero bias, followed by a strong peak at a finite bias voltage VmaxV_{\rm max}. This behavior, which is qualitatively different from that observed for the electron Fermi sea, provides fundamental insight into the strongly correlated non-Fermi liquid nature of the CF Fermi sea and, in particular, offers a window into the short-distance high-energy physics of this state. We identify the exciton responsible for the peak current and provide a quantitative account of the value of VmaxV_{\rm max}. The excitonic attraction is shown to be quantitatively significant, and its variation accounts for the increase of VmaxV_{\rm max} with the application of an in-plane magnetic field. We also estimate the critical Zeeman energy where transition occurs from a fully spin polarized composite fermion Fermi sea to a partially spin polarized one, carefully incorporating corrections due to finite width and Landau level mixing, and find it to be in satisfactory agreement with the Zeeman energy where a qualitative change has been observed for the onset bias voltage [Eisenstein et al., Phys. Rev. B 94, 125409 (2016)]. For fractional quantum Hall states, we predict a substantial discontinuous jump in VmaxV_{\rm max} when the system undergoes a transition from a fully spin polarized state to a spin singlet or a partially spin polarized state.Comment: 14 pages, 14 figure

    Role of solar flare index in long term modulation of cosmic ray intensity

    Get PDF
    Recently, the importance of the occurrence of solar flares in the long-term modulation of cosmic ray intensity has been re-emphasized. For this purpose, the data of solar flares have been used from various publications, such as Solar Geophysical Data books, U.A.G. reports and Quarterly Bulletin Of Solar Activity. Research very clearly reveals that even the periodic changes in the solar flare observations, obtained from the four different data sources, for the same interval, differ significantly from one another; this is evidenced even on an average basis. Hence, in any study using solar flares, the importance of selecting a single compilation of the solar-flare data for the entire period of investigation is stressed
    corecore